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Appendix A 

Statistical Methods Used to Compute Upper 
Confidence Limits for the Mean Inventory of 

Contaminants Based on CWID 

This analysis computed the summary statistics and upper confidence limits (UCLs) for the 
concentrations of contaminants at specific release sites. 

Data issues: 

The units of measure used in the CWID database (DOE-ID 2000) were picocuries per gram (pCi/g) 
for radiological contaminants, and a variety of units for nonradiological contaminants. In particular, the 
units for nonradiological measurements were either mg/kg, ug/g, ug/kg, ug, su or “units”. The first two of 
these, mg/kg and ug/g, are basically the same thing, so ug/g was simply renamed to mg/kg. The 
concentrations in ug/kg were then converted to mg/kg. This amounted to simply multiplying each such 
concentration by 1 e-03. 

The contaminants with units given in ug were ytterbium, terbium, and dysprosium, and all were at 
release site WRRTF-01 . Because the soil sampled was not indicated for these contaminants, it was not 
possible to determine concentrations and these measurements were excluded from the analysis. The 
measurements in either su or “units” were measurements of pH, and these were also excluded from the 
analysis. 

Methods for handling nondetects (i.e., less than detectable measurements) are discussed by 
Hertzler, Atwood and Harris (1989). If we denote by DL the detection limit, then it is suggested that 
nondetects could be replaced in the formulas for the sample mean and sample variance by either 0, DW2, 
or DL. It is noted that if 0 is used, the resulting estimate of the mean is biased low, but the estimate of the 
standard deviation is biased high. On the other hand, if nondetects are replaced by DL, the estimate of the 
mean is biased high, but the estimate of the standard deviation is biased low. In order to obtain a UCL 
which tends to be conservative, we use the estimate of the mean which replaces nondetects with DL and 
the estimate of the standard deviation where nondetects are replaced with 0. If the concentrations are all 
detectable, then the estimates are simply the usual sample mean and sample standard deviation. 

In some cases where the concentration was less-than-detectable, instead of recording a detection 
limit in the CWID database, a zero was recorded. When this is the case for all measurements, it is not 
possible to compute a UCL because no estimate of the variance can be computed. Also, there are cases 
where only one concentration was measured, and, when this is the case, no estimate of the variance can be 
computed, so again no UCL can be computed. There are also several cases with radiological 
measurements in which the data recorded in the CWID database are negative, even though, in reality, 
concentrations must be non-negative. This often occurs when the concentrations are near or below 
detection limits. It is not unusual in this instance for the average of background measurements to be 
greater than some (or all) of the concentration measurements. The background adjustment subtracts the 
average background from each measurement, and, when the average background is greater than the 
measurement, the result is a negative value. When computing a UCL, it makes sense to replace a negative 
estimate of the mean with zero, but the negative measurements still contain useful information about the 
amount of variability and can be used to estimate the standard deviation and compute a UCL. 

A-3 



Various approaches for computing one-sided UCLs for the mean concentration of a contaminant 
are discussed by Singh, Singh and Engelhardt (1 997). Specifically, if a normal distribution provides an 
adequate fit to the data, then the standard approach in constructing a UCL based on the Student’s t is 
recommended. Otherwise, a nonparametric UCL based on the Chebychev bound is recommended. 

The Student’s t approach assumes that the data are independent measurements, each distributed 
according to a common normal distribution. The assumption of normality can be checked by running a 
goodness-of-fit test for normality on the data. 

The Chebychev approach makes no special parametric assumption such as normality. Instead, it 
assumes only that the data are independent measurements from a common distribution with an 
unspecified form. The resulting UCLs tend to be conservative in the sense that they tend to include the 
true mean with higher than the nominal confidence level. 

Formulas: 

Let xl, x2,. . ., x, be a set of n measurements resulting from a random sample from a population with 
mean p and standard deviation 0. Denote the sample mean and sample standard deviation, respectively by 

and 

If the population is normally distributed, then a 1 OOx( I-a)% UCL is of the form 

where tl-a,n-l is the lOOx(1-a)th percentile of the Student’s t distribution with n - 1 degrees of freedom. 

For example, if a = 0.05, then (1) is a 95% upper confidence limit. A common interpretation is that 
on the average 95% of such limits will lie above the true population mean :. 

Even if the population is not normal, the UCL of equation (1) is often justified by invoking the 
Central Limit Theorem (CLT) if the number of measurements, n, is sufficiently large. An often cited 
guideline for use of the CLT is when n > 30, in which case the t-value is replaced by the corresponding 
asymptotic normal value. For example, the standard normal 95” percentile is z0.95 = 1.645. Strictly 
speaking, the CLT requires the use of the population standard deviation, 0, but because this is usually 
unknown it is common practice to use in its place the sample standard deviation, s. 

The Chebychev inequality has the form 

P[- k a  I x - p I k a ]  2 1 - l / k 2  
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where Xis a random variable with mean p and standard deviation CJ (see, e.g., Bain and Engelhardt [1992, 
page 761). If we apply the Chebychev inequality to the arithmetic average x of n independent random 
variables, each distributed the same as X,  then we have 

p - - < x - p < -  k O ] = l - l l k  2 , [ :-- & 
By equating the right side of the equation to 0.95 and solving for k = 4.47 we have that we are at 

least 95% confident that 

4.470 - 4.470 
-- < x - p I - .  

& -  & 
If we disregard the right side of this inequality and with a little simple algebra, we are more than 

95% confident that 

- 4.470 p I x+- r 

so that the right side of (2) is a conservative 95% UCL for p. Strictly speaking, to apply this limit requires 
knowing the population standard deviation, but, as suggested by Singh, Singh and Engelhardt (1 997), we 
will use the sample standard deviation as an estimate. 

There are two issues to be resolved regarding the use of equations (1) and (2). In particular, it is 
necessary to perform a goodness-of-fit test for normality, and also, when some of the measurements are 
below detection limits, it is necessary to replace the estimates with approximations or conservative upper 
bounds. 

Concerning the goodness-of-fit testing, there exist many such tests which are designed to test 
whether the normal model provides a reasonable fit. The one we are using here is based on the skewness 
statistic and is designed to be sensitive to deviations from symmetry, a well-known property of the normal 
distribution. The details ofthis test are discussed by D’Agostino and Stephens (1986, page 377). 

The test is based on a standardized version of the third sample moment 

XI’ r=l ( X i  -2)’ 
m, = 

n 

Specifically, the statistic has the form 

&=m3 l m ,  3 1 2  

where 

XI’ r=l ( X i  - 2)’ 
m2 = 

n 
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The null distribution for this statistic is discussed in D’Agostino and Stephens (1986, page 28 l), 
and a transformation is suggested which ( 3 )  is approximately standard normal when n 2 8. This was used 
to test for normality. 

It is possible to obtain a conservative UCL in the case where all measurements are nondetects, but 
a different rationale is required for the estimate of standard deviation. Suppose, for example, all 
measurements attempted are below the detection limit. Then, the sample standard deviation cannot be 
computed exactly because no exact measurements are available. However, it is known that all 
measurements are between 0 and the detection limit. If the detection limit is the same for all 
measurements, we denote it by DL, otherwise denote the maximum detection limit by DL. We consider 
the case where the number of measurement is even. The argument would be similar for an odd number. 
An upper bound for the sample variance s2 would be obtained by applying the formula for s2 with half of 
the xi were set equal to 0 and the other half set equal to DL. For data of this sort, the mean formula would 
yield DL/2, and the variance formula would yield 

cr=, ( X i  - 2)’ ( n  / 2)(0 - DL / 2)2 + (n  / 2)(DL - DL / 2)2 n 
- - = (DL/2)’  

n - 1  n - 1  n - 1  

and, consequently, we have an upper bound for the sample standard deviation, 

n DL 
n - 1  2 

If the number of measurements is odd, it can be shown that instead of (4) an upper bound for the 
sample standard deviation is given by the slightly different form 

(4) 

n + l  DL 
n 2  

The arithmetic average of the detection limits provides an upper bound for the sample mean when 
all measurements are nondetects. Thus, in the case of all nondetects, a conservative UCL can be obtained 
based on these upper bounds. 
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